

Technical specifications Version 1.0

CL2-D4 Chlorine Sensor – Miniature Size

Dimensions are in millimetres (± 0.1 mm).

Performance	Sensitivity Response time Zero current Resolution Range Linearity Overgas limit	nA/ppm in 10ppm Cl ₂ t90 (s) from zero to 10ppm Cl ₂ ppm equivalent in zero air RMS noise (ppm equivalent) ppm Cl ₂ limit of performance warranty ppm error at full scale, linear at zero and 10ppm Cl ₂ maximum ppm for stable response to gas pulse	-150 to -350 < 35 ± 0.8 < 0.1 20 ± 0.5 60
Lifetime	Zero drift Sensitivity drift Operating life	ppm equivalent change/year in lab air % change/month in lab air, twice monthly test months until 80% original signal (24-month warranted)	nd nd > 18
Environmental	Sensitivity @ -20°C Sensitivity @ 50°C Zero @ -20°C Zero @ 50°	% (output @ -20°C/output @ 20°C) @ 10ppm Cl ₂ % (output @ 50°C/output @ 20°C) @ 10ppm Cl ₂ ppm equivalent change from 20°C ppm equivalent change from 20°C	80 to 110 95 to 125 -0.4 to 0.4 0 to 0.5
Cross Sensitivity	H ₂ S sensitivity NO ₂ sensitivity NO sensitivity SO ₂ sensitivity CO sensitivity H ₂ sensitivity C ₂ H ₄ sensitivity NH ₃ sensitivity	% measured gas @ 20ppm H ₂ S % measured gas @ 10ppm NO ₂ % measured gas @ 50ppm NO % measured gas @ 20ppm SO ₂ % measured gas @ 400ppm CO % measured gas @ 400ppm H ₂ % measured gas @ 400ppm C ₂ H ₄ % measured gas @ 20ppm NH ₃	< -200 < 120 < 0.5 < -3 < 0.1 < 0.1 < 0.1 < 0.1
Key Specifications	Temperature range Pressure range Humidity range Storage period Load resistor Weight	°C kPa % rh (see note below) months @ 3 to 20°C (stored in sealed pot) Ω (for optimum performance) g	-20 to 50 80 to 120 15 to 90 6 33 < 2

Figure 1 Response to 10ppm Cl,

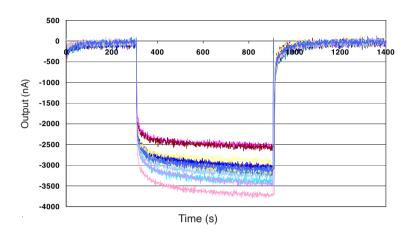


Figure 1 shows response to 10ppm Cl₂.

This data is taken from a typical batch of sensors.

Figure 2 Zero Temperature Dependence

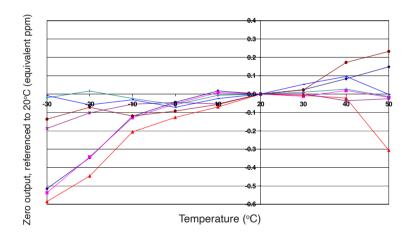


Figure 2 shows the variation in the zero by changes in temperature, expressed as equivalent ppm, referenced to zero at 20°C. This data is taken from a typical batch of sensors.

Figure 3 Load Resistor Dependence

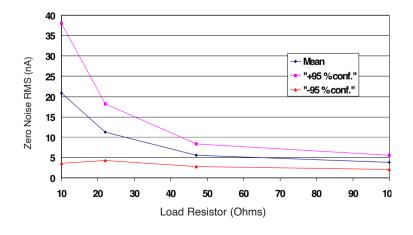


Figure 3 shows the effect of the load resistor on noise. Higher resistance reduces sensor noise, but also linearly increases response time.

Note: Above 85% rh and 40°C a maximum continuous exposure period of 10 days is warranted. Where such exposure occurs the sensor will recover normal electrolyte volumes when allowed to rest at lower % rh and temperature levels for several days.

At the end of the product's life, do not dispose of any electronic sensor, component or instrument in the domestic waste, but contact the instrument manufacturer, Alphasense or its distributor for disposal instructions. NOTE: all sensors are tested at ambient environmental conditions unless otherwise stated. As applications of use are outside our control, the information provided is given without legal responsibility. Customers should test under their own conditions, to ensure that the sensors are suitable for their own requirements.

In the interest of continued product improvement, we reserve the right to change design features and specifications without prior notification. The data contained in this document is for guidance only. Alphasense Ltd accepts no liability for any consequential losses, injury or damage resulting from the use of this document or the information contained within.(©ALPHASENSE LTD) Doc. Ref. CL2-D4/SEP22